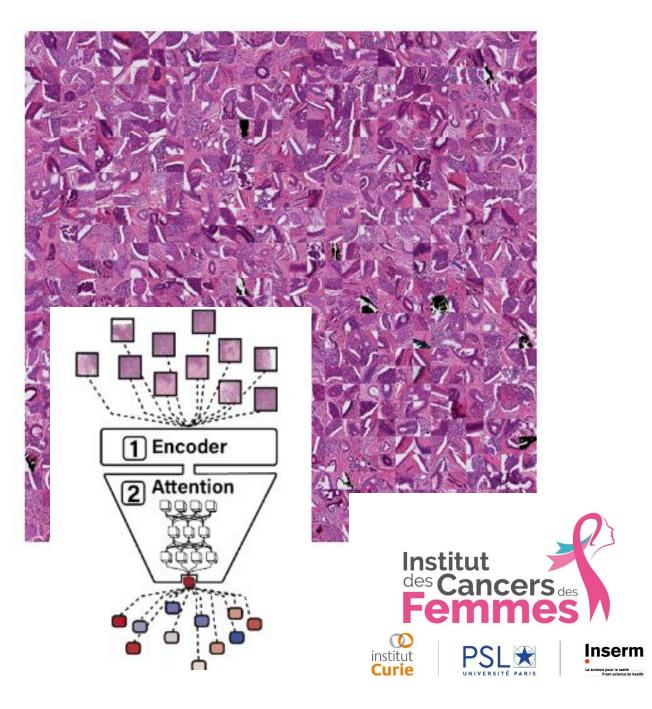
Pr Anne Vincent-Salomon Department of Pathology Institut CURIE Paris and PSL University, France

Digitalization of Pathology Department and the Use of Artificial Intelligence in Practice

ENSEMBLE, PRENONS LE CANCER DE VITESSE



- Ibex Medical Analytics: grant for research, honoraria, stock options, travel supports
- Astra-Zeneca: grants for research, travel supports, honoraria
- Daiichi-Sankyo: honoraria for lectures
- MSD and MSD Avenir: grant research
- Owkin: grant for research
- Primaa: grant for research
- Myriad: honoraria

- 1-Introduction
- 2- Diagnosis of breast cancer using AI
- 3- Prediction of Homologous Recombination Deficiency (HRD) in breast cancers using AI
- 4- Digital transition of Institut Curie's pathology department
- **5- Perspectives**

• Transformation of a **glass** slide into a **digital** slide (Whole slide images, WSI): generated by digital scanners

 \rightarrow An additional step in the pathology technical workflow

- Scanners
- Image management system + Laboratory Management System
- WSI Storage capacities

What can computer vision scientists do for pathologists ?

AI Diagnostic tools to help pathologists in time consuming tasks

Development of predictive and prognostic surrogate markers from digitalized H&E slides

- Diagnosis of lymph node metastases
- Diagnosis of breast cancer
- Mitotic count
- Quantification of markers assessed by immunohistochemistry

- Molecular classes status (without IHC)
- Genomic status of BRCA1 or 2
- To predict response to neoadjuvant therapy
- To define prognosis
- Etc....

•Improve pathologists workflow and reduce turn around time

- Increase accuracy, reduce inter-observer variability
- "Second reads" before final sign out to ensure clinically significant lesions have not been missed (QA)

AI TOOLS IN PATHOLOGY:

Developped by pathologists with computational vision scientists +++

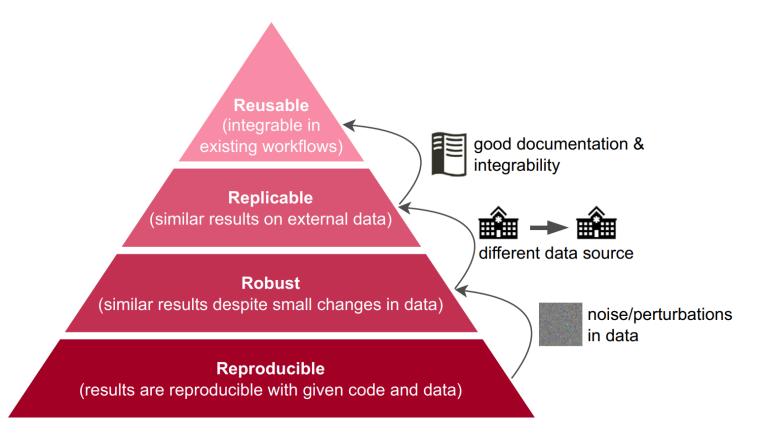


Figure 2.

Reproducibility, robustness, replicability, and reusability in the context of deep learning algorithms for computational pathology.

1-Introduction

2- Diagnosis of breast cancer using AI

3- Prediction of Homologous Recombination Deficiency (HRD) in breast cancers using AI

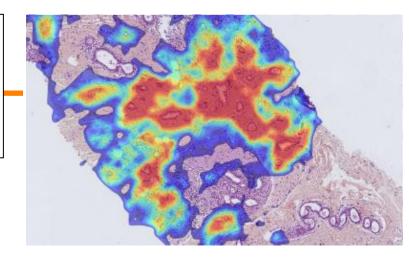
4- Digital transition of a pathology department

5- Perspectives

Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies

Judith Sandbank^{1,2}, Guillaume Bataillon^{3,7}, Alona Nudelman¹, Ira Krasnitsky², Rachel Mikulinsky², Lilach Bien², Lucie Thibault³, Anat Albrecht Shach⁴, Geraldine Sebag², Douglas P. Clark², Daphna Laifenfeld^{2,8}, Stuart J. Schnitt^{5,6}, Chaim Linhart², Manuela Vecsler² and Anne Vincent-Salomon^{3³}

NPJ Breast cancer 2022



Internal training Set (n=2167 cases)

Set	Analysis	Number of cases	AUC [®] [95% CI]	Specificity [95% Cl]	Sensitivity [95% Cl]	PPV NPV
Internal test set (MHS)	Invasive vs. non- invasive	1090 (173 invasive, 917 non- invasive)	0.998 [0.996;1.000]	98.27% [95.03%;99.41%]	99.02% [98.15%;99.48%]	95.0%, 99.7%
	DCIS vs. benign/ other	908 ^a (27 DCIS, 881 benign)	0.999 [0.997;1.000]	98.64% [97.56%;99.30%]	100% [84.50%;100%]	69.3%, 100%
	IDC vs. ILC	169 ^b (156 IDC, 13 ILC)	0.932 [0.862;1.000]	NA ^c	NAc	NA ^c

* AUC – area under the ROC** curve

**The Receiver Operator Characteristic (ROC) curve plots the True Positive Rate against False Positive Rate at various threshold values and shows the performance of a classification model at all classification thresholds.

N=436 cases* (156 invasive**; 135 DCIS/ADH; 145 benign)

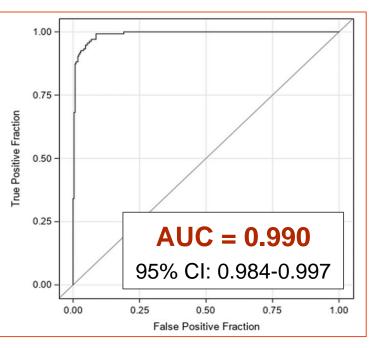
Performance		95% Confid	ence Limits
Sensitivity	95.51%	91.03%	97.81%
Specificity	93.57%	90.07%	95.90%
PPV	89.22%	83.61%	93.07%
NPV	97.40%	94.73%	98.73%

PPV – positive predictive value NPV- negative predictive value

** 34 rare invasive carcinomas types: fusiform metaplastic, tubular, apocrine, mucinous, micropapillary, acinic cells carcinomas

* Performance on consecutive biopsies is expected to be higher

ROC CURVE

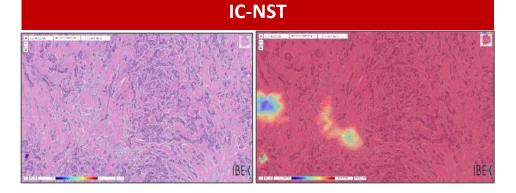


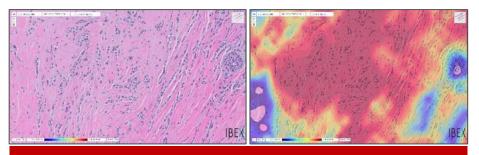
AUC – area under the ROC curve; Galen Breast invasive probability score versus the ground truth diagnosis after discrepancy review

N= 153 cases (98 IDC; 55 ILC)

Performance		95% Confide	ence Interval
AUC	0.973	0.996	0.948
Sensitivity	92.9%	97.1%	85.8%
Specificity	92.7%	97.1%	82.7%
PPV	95.8%	98.3%	89.6%
NPV	87.9%	95.0%	76.7%

Heatmaps display: low probability in blue high probability in red





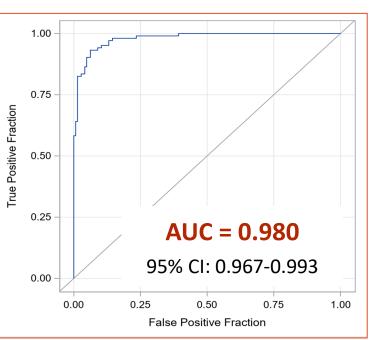
Invasive Lobular carcinoma

Galen Breast AI Validation study: In Situ Ductal Carcinoma Detection

N= 248 cases (103 DCIS; 145 benign/other)

Performance		95% Confid	ence Limits
Sensitivity	93.79%	88.63%	96.70%
Specificity	93.20%	86.63%	96.67%
PPV	91.4%	84.51%	95.43%
NPV	95.1%	90.24%	97.61%

ROC CURVE



AUC – area under the ROC curve; Galen Breast in-situ probability score versus the ground truth diagnosis after discrepancy review

institut**Curie**

Performance for DCIS and ADH detection versus benign is AUC=0.949, Sensitivity=87.41%, Specificity=86.9%

******cohort enriched with low grade DCIS ; Performance on consecutive biopsies is expected to be higher

(Intermediate and High) grade DCIS versus (ADH and Low) Grade DCIS

N= 134 cases (88 IG/HG DCIS; 46 LG DCIS/ADH)

Performance		95% Confidence	nterval
AUC	0.921	0.965	0.878
Sensitivity	84.1%	90.3%	75.1%
Specificity	84.8%	92.4%	71.8%
PPV	91.4%	95.8%	83.2%
NPV	73.6%	83.6%	60.4%

Note: These studies do not represent a typical case distribution in a lab, since low grade and ADH were enriched in order to allow sufficient statistical power for various analyses; Performance on consecutive biopsies is expected to be higher

In pure invasive carcinomas

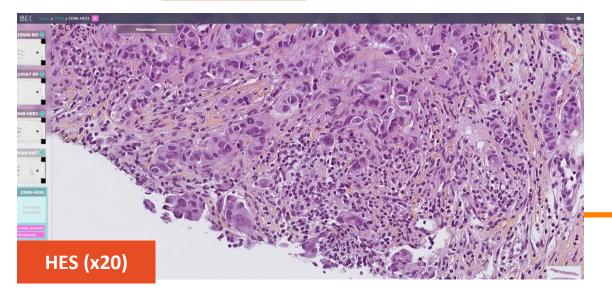
N= 47 cases (19 TILs positive; 28 TILs negative)

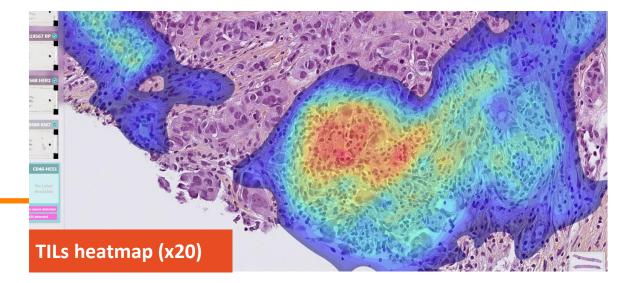
Performance		95% Confid	dence Interval
AUC	0.953	0.892	1.0
Sensitivity	94.7%	73.5%	99.9%
Specificity	85.7%	67.9%	94.9%

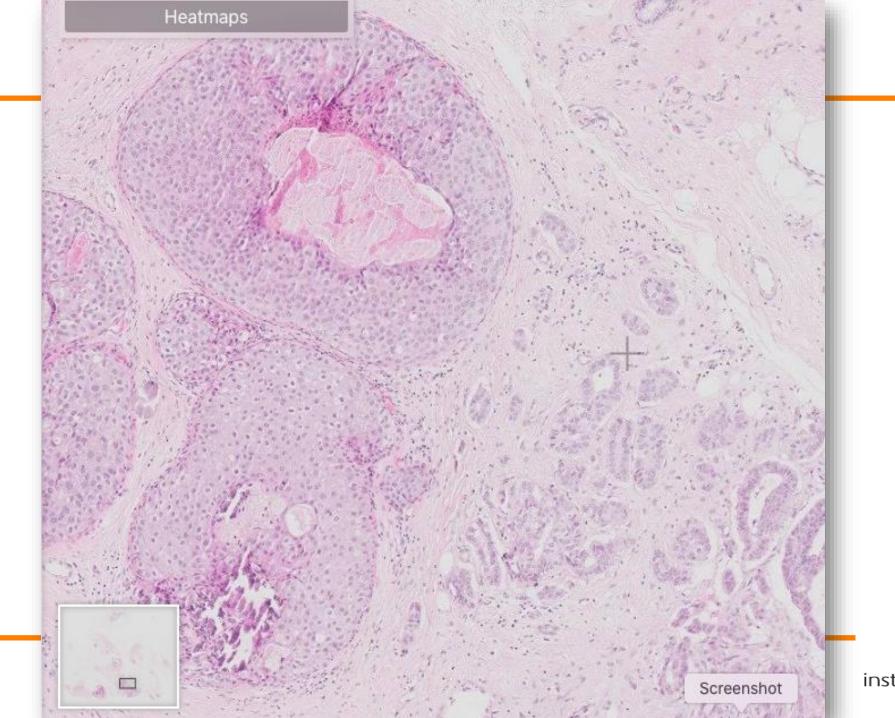
in Invasive carcinomas associated with DCIS

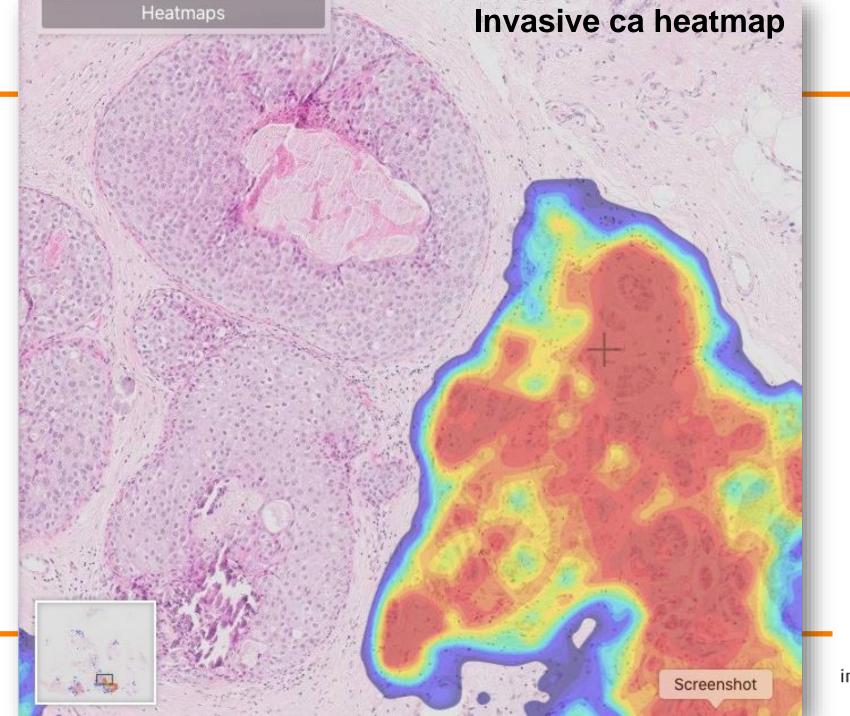
N= 109 cases (32 TILs positive; 77 TILs negative)

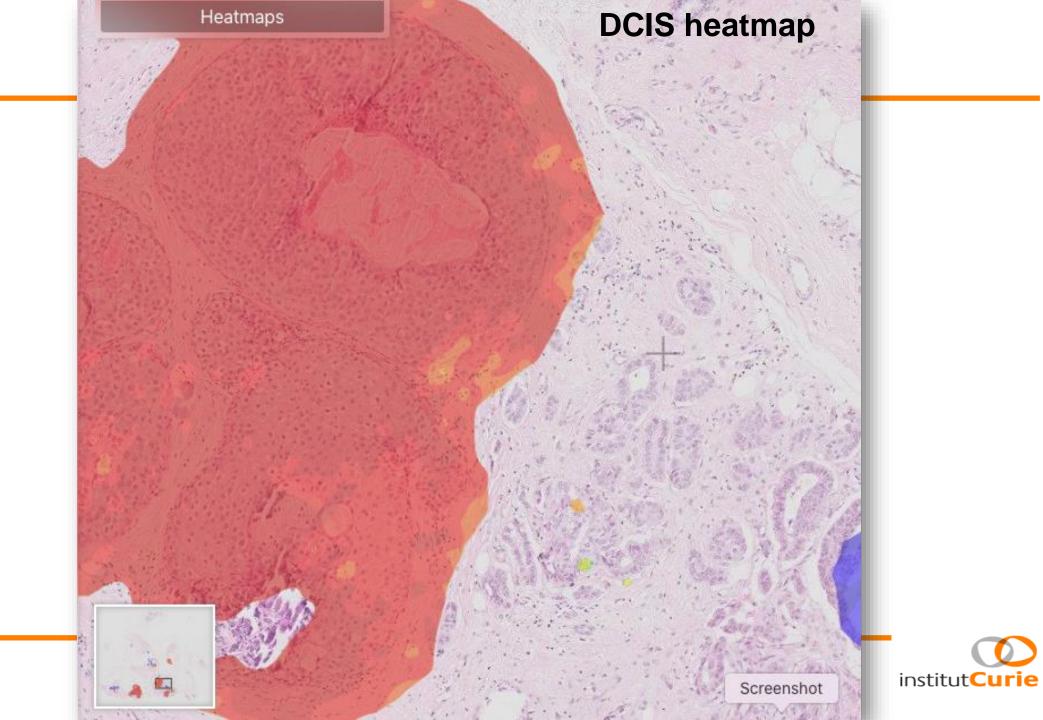
Performance		95% Confi	dence Interval
AUC	0.965	0.934	0.996
Sensitivity	93.8%	78.8%	99.3%
Specificity	85.7%	76.3%	92.0%











GALEN BREAST ALGORITHM: PERFORMANCES IN 5 INDEPENDENT STUDIES FROM DIFFERENT LABS AROUND THE WORLD

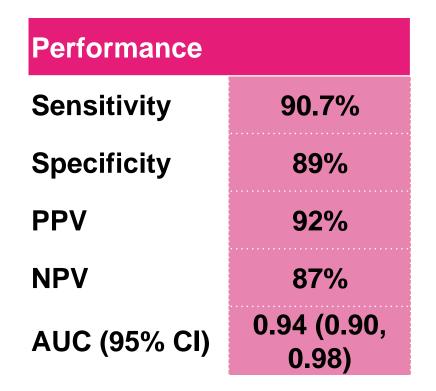
(different scanners, different stainings...)

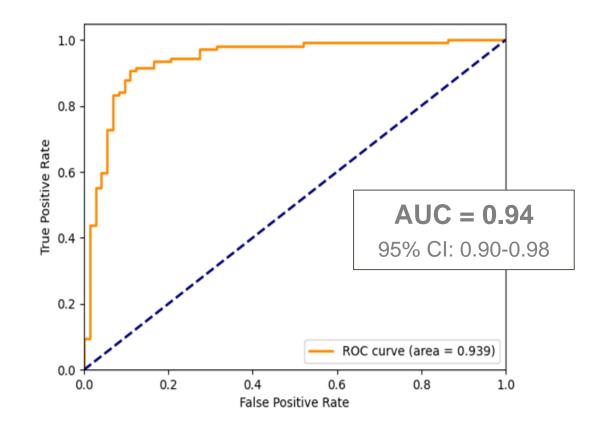
	Number of Cases	Specimen Type	Invasive Ca AUC	DCIS AUC
Sandbank, 2022 Test Set	1998	CNB	0.998	0.999
Sandbank, 2022 Validation set	684	CNB	0.990	0.980
Assaad, 2023*	475	СNВ	0.98	0.99
Shaker, 2024*	108	CNB	0.976	0.975
Lami, 2024	100	CNB	0.997	0.975
Broeckx, 2023*	248	Excisions	0.986	0.994

*meeting abstracts Lamy et al, Pathology 2024

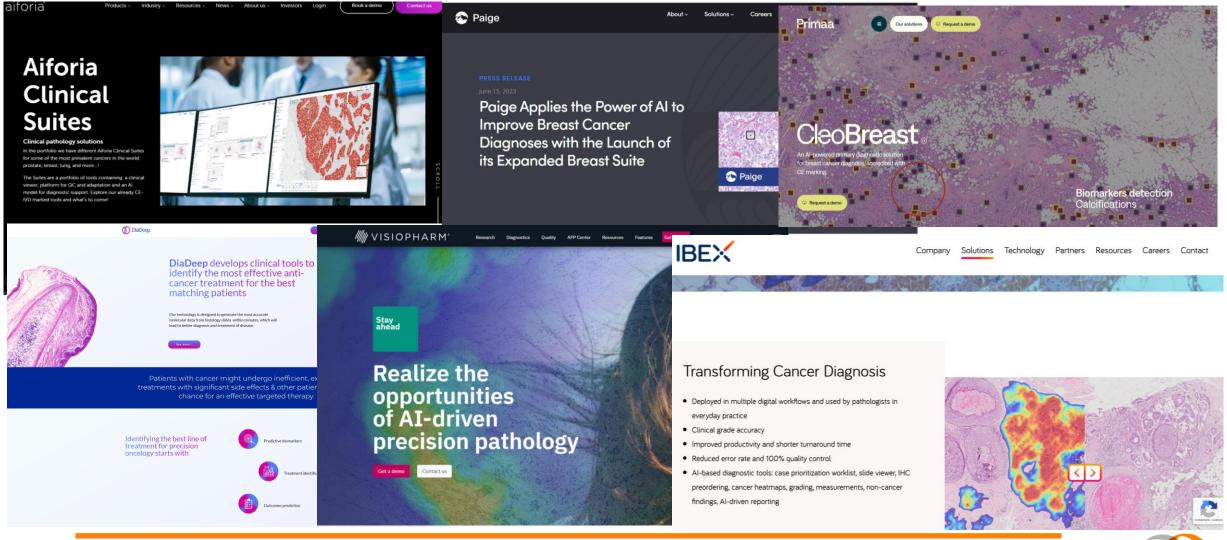
GALEN BREAST PERFORMANCE IN ANOTHER VALIDATION SET TO IDENTIFY IDC VERSUS ILC

N= 180 cases (107 IDC; 73 ILC)



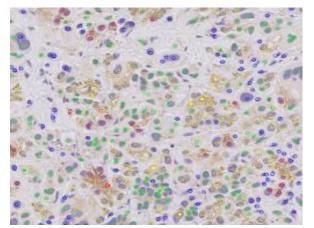


AI to quantify biomarkers: many AI tools available on the market



institutCurie

Automatic identification of infiltrating cells + Classification and scoring according to ASCO/CAP guidelines



Not stained Faint incomplete

۰

Moderate incomplete

Intense incomplete

Faint complete

Not invasive

Moderate complete

Intense complete

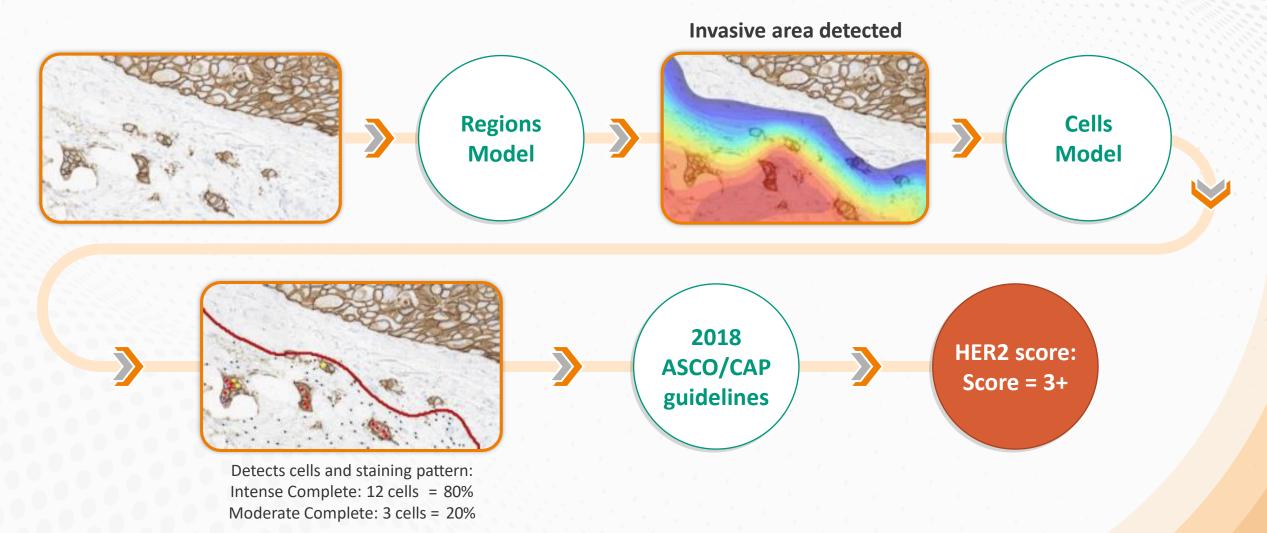
HER2 evaluation at a cell level

- Fully automated pipeline. •
- The pathologist does not select the area of interest

"Transfer Learning Reading" technology uses H&E algorithms to train IHC reading algorithms.

Combining infiltrative versus *in situ* diagnostic • analysis and quantification of stainings

Al Solution for Evaluation of HER2 Immunostain: IBEX Breast HER2



1-Introduction

2- Diagnosis of breast cancer using Al

3- Prediction of Homologous Recombination Deficiency (HRD) in breast cancers using AI

4- Digital transition of a pathology department

5- Perspectives

Germline (and somatic) BRCA1 & 2:

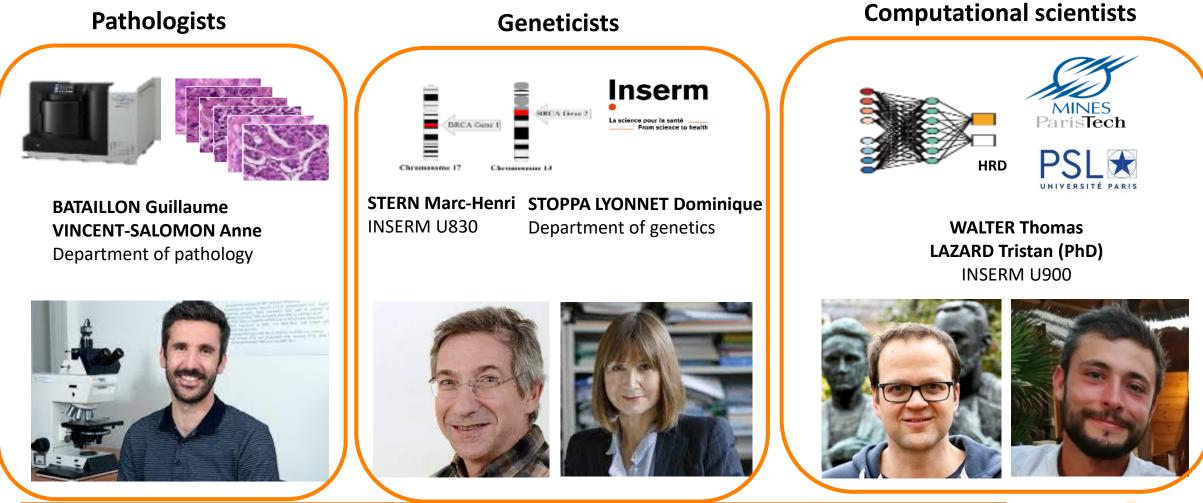
- An approved biomarker for
 - TNBC and ER+ HER2- metastatic breast cancers
 - High-risk early breast cancers
- In the NCCN and ESMO guidelines

Detection of BRCA1 or 2 mutation by a systematic sequencing approach

- Is feasible for Triple Negative Breast Cancers:
 - That represent 15 to 18% of all breast cancers
 - Knowing that the identification of a *BRCA1* mutation is found in only 15% of TNBC
- May be difficult to extend to all luminal Breast Cancers because of:
 - The volume & logistics
 - The costs

We aimed at developing an AI algorithm that would predict HRD directly from whole slide images and that could become a **screening tool for triage of tumors more likely to be mutated**

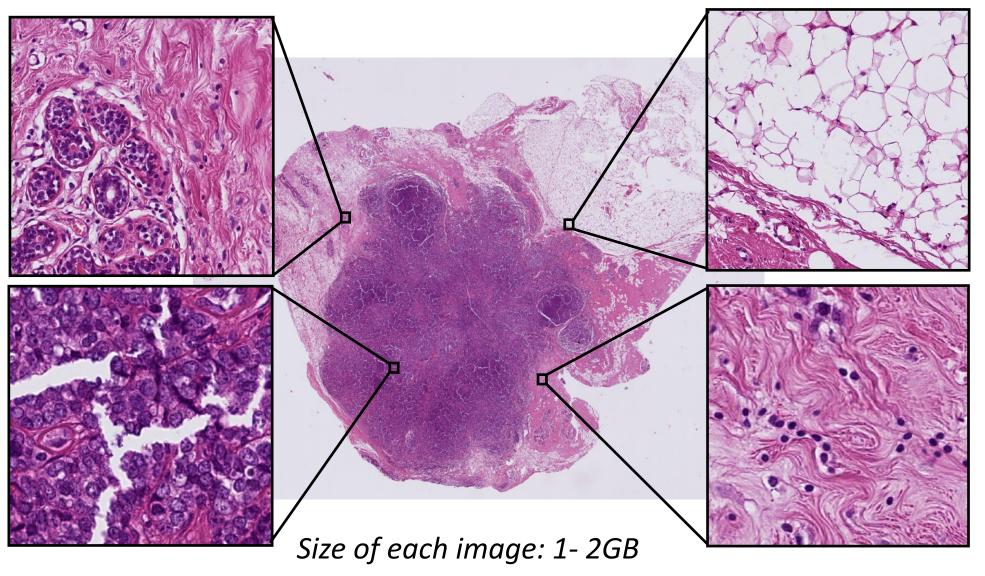
Collaboration between 3 teams from the Institut CURIE hospital and research center



Two datasets for HRD prediction

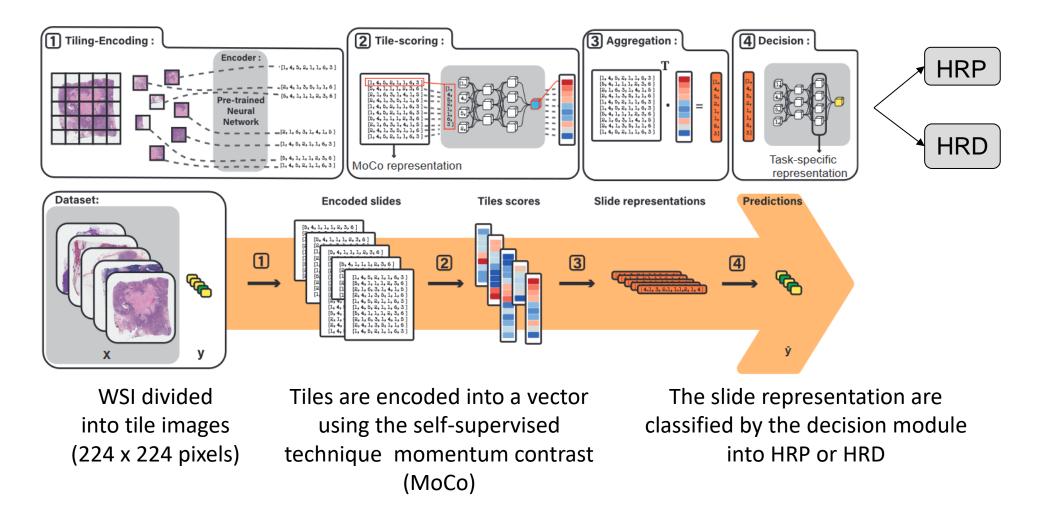
- The Curie dataset: 715 of luminal and TNBC breast cancers patients HE slides (surgical specimens, no neoadjuvant treatment)
- Known Homologous Recombination status (ground truth):
 - **309** Homologous recombination proficient (HRP) tumors
 - assessed with the Large State Transition (LST) method
 - **406** Homologous recombination deficient (HRD) tumors
 - Germline BRCA1 & 2
 - Sporadic *BRCA1 & 2* (49 cases)
- the TCGA dataset:
 - 800 cases (slides and genomic analyses by SNP6.0)
 - Homologous Recombination status determined by the LST method

Computational challenge: one slide = many images



~ 50.000 images (256x256)

Methods: End to End pipeline and Multiple Instance Learning



Prediction of HRD				
	AUC		B _{Acc}	
	Mean	SD	Mean	SD
TCGA _{raw}	0.71	0.10	0.59	0.08

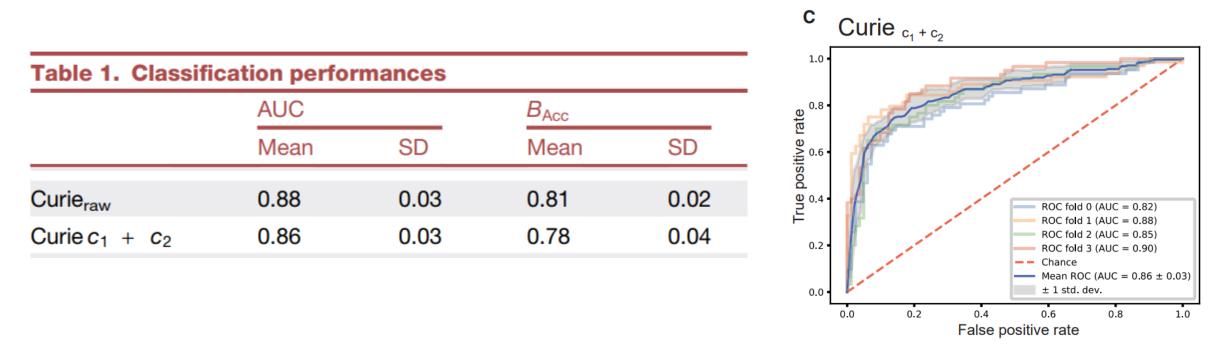
Consistent with previous published analyses showing an AUC = 0.74*

	AUC	AUC		
	Mean	SD	Mean	SD
Curie _{raw}	0.88	0.03	0.81	0.02

Dradiction of UDD

Performance of the algorithm on the Curie series after technical biases correction

Tumor blocks from Curie data set were prepared over a period of 25 years (During this time, protocols for block preparation have changed)



The **Receiver Operator Characteristic (ROC)** curve plots the **TPR** against **FPR** at various threshold values and shows the performance of a classification model at all classification thresholds.

Performance of the algorithm on the TCGA dataset

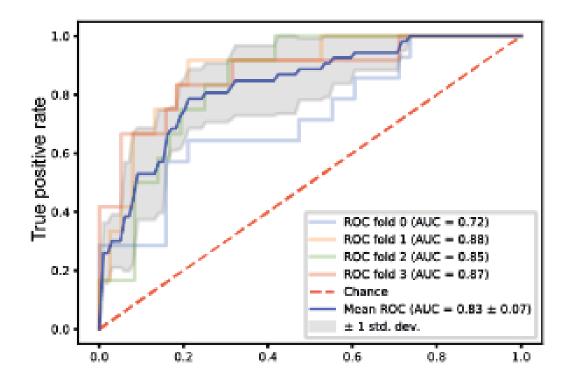
after correction of the biological confounder "molecular class"

	AUC		B _{Acc}	
Prediction of HRD	Mean	SD	Mean	SD
TCGA _{raw}	0.71	0.10	0.59	0.08
TCGA c ₃ *	0.63	0.08	0.54	0.02
*C3: bias of the molecular class				

This result suggested that a NN trained on the entire BC cohort of TCGA for HRD prediction without stratification or bias correction might actually predict to a large extent the molecular subtype

Prediction of Molecular classes in the TCGA with our algorithm: AUC = 0.89

251 Luminal WSI (188 HRD, 63 HRP)

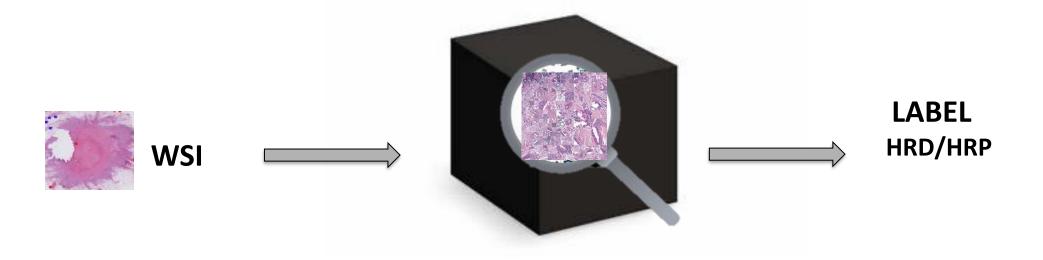


AUC = 0.83 Sensitity: 88% Specificity: 57% Positive predictive value: 86%

	Ground Truth = genomic status		
	Luminal (n= 251)		
AI Prediction	HRD	HRP	
HRD	166	27	
HRP	22	36	
Total	188 63		

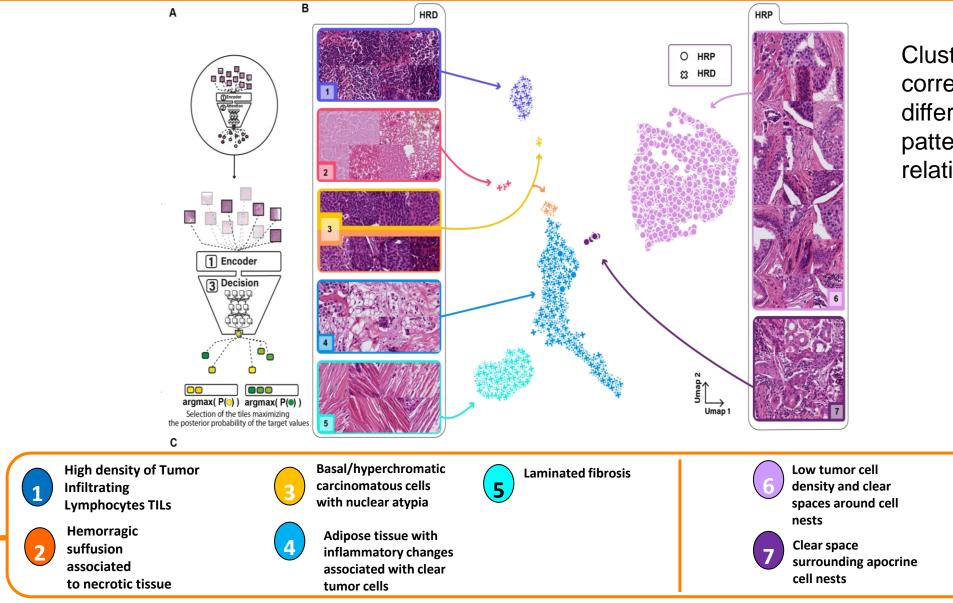
Opening the black box for pathologists is important !

To visualize and understand the TILE features that weighted in the algorithm and that weighted the most to predict the label



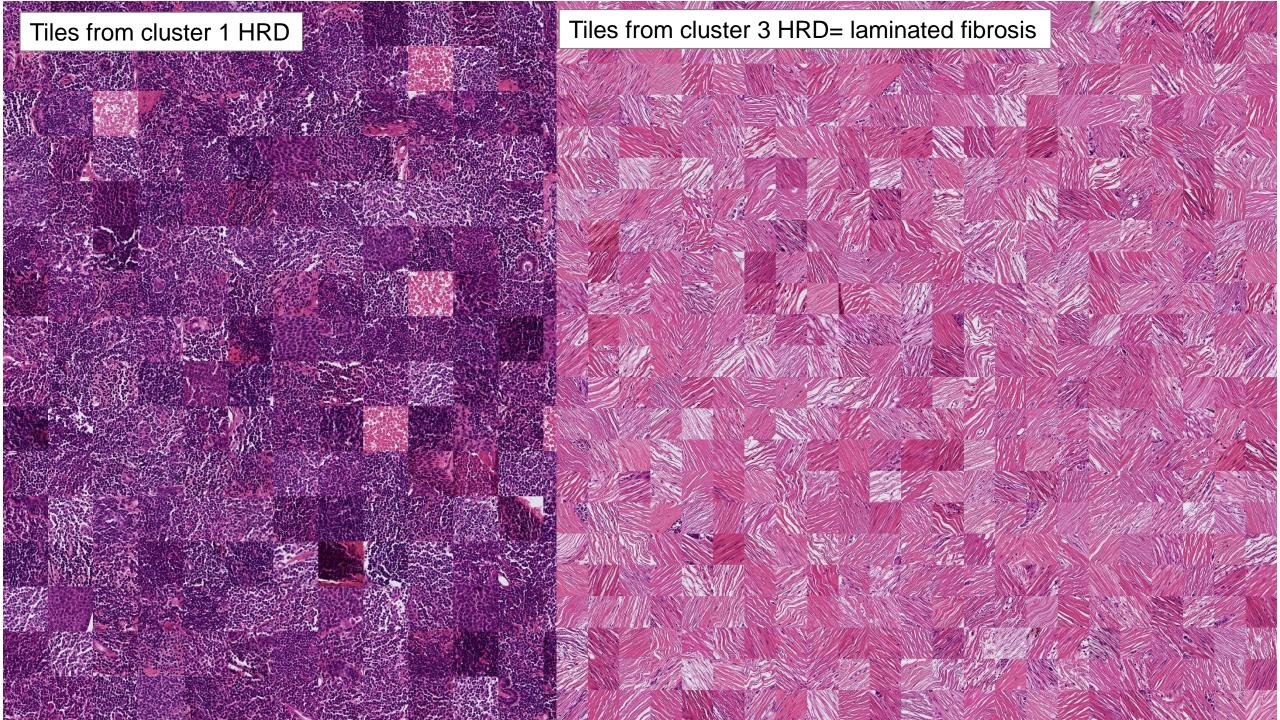
• To pave the way for MACHINE TEACHING !

Visualization of TILE features that weighted in the algorithm



Clusters corresponding to different tumors tissue pattern with a clear relation with HRD or HRP

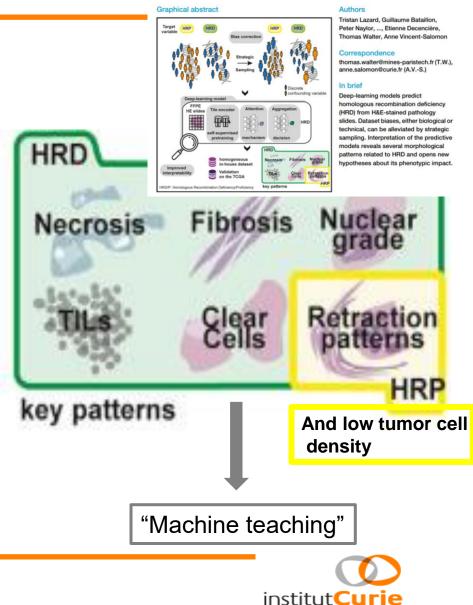
institutCurie



Conclusions from this study

- Homologous recombination deficiency is predictable from H&E slides with high accuracy (0.83)
- Biases in computational pathology data can be alleviated by strategic sampling (the method of choice)

- We identified five HRD and two HRP-related morphological patterns
- \rightarrow A biological in vitro validation needed before using it



Cell Reports

Medicine

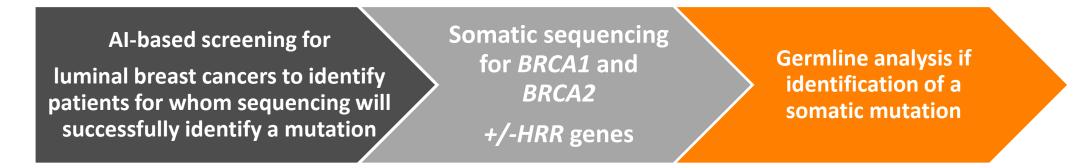
Deep learning identifies morphological patterns of

homologous recombination deficiency in luminal

breast cancers from whole slide images

Future steps:

- Validation with external cohorts is on going
 - PhD Thesis of dr Raphaël BOURGADE (CHU de Nantes, France, Dr Loussouarn)
 - under the supervision of Prs Walter (INSERM 900 & Ecole des Mines-PSL University, and myself)
- It will be soon applied on HES from our patient Institut CURIE



1-Introduction

2- Diagnosis of breast cancer using AI

3- Prediction of Homologous Recombination Deficiency (HRD) in breast cancers using AI

4- Digital transition of a pathology department

5- Perspectives

Transition to a digital lab at Institut Curie, France: from gross sampling to an Health Data Wharehouse

- 1- It's a long process
- 2- This transition needs perseverance
- 3- The success of the digital transition: it's a team success
- 4- Integration of AI tools is an additional challenge

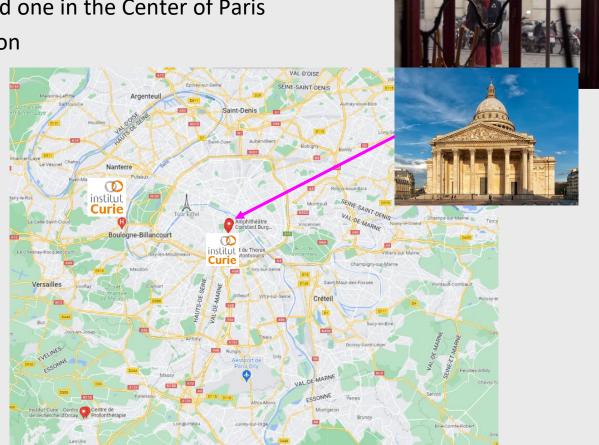
Successful Digital Transformation of a pathology department

- Take the time to define the needs adapted to our practice
- Associate the team, pathologists and technicians, to choose scanners and IMS
- Human resources needed to set up the project (IT department and in pathology)
- Distribution of the glass slides in parallel to the digitalized slides to let the time to pathologists to get used to digitalized slides (for 6 months)
- Anticipate the Storage needs (costs +++)
 - "Short-term" storage: 220 To (approx. 10 weeks workload)
 - "Long-term" storage: 25 To/year (approx. 1 slide/sample)
- IT Security issues & interoperability of the LIMS & IMS, solved thanks to the Data Protection Officer and the IT department
- Financial and institutional support

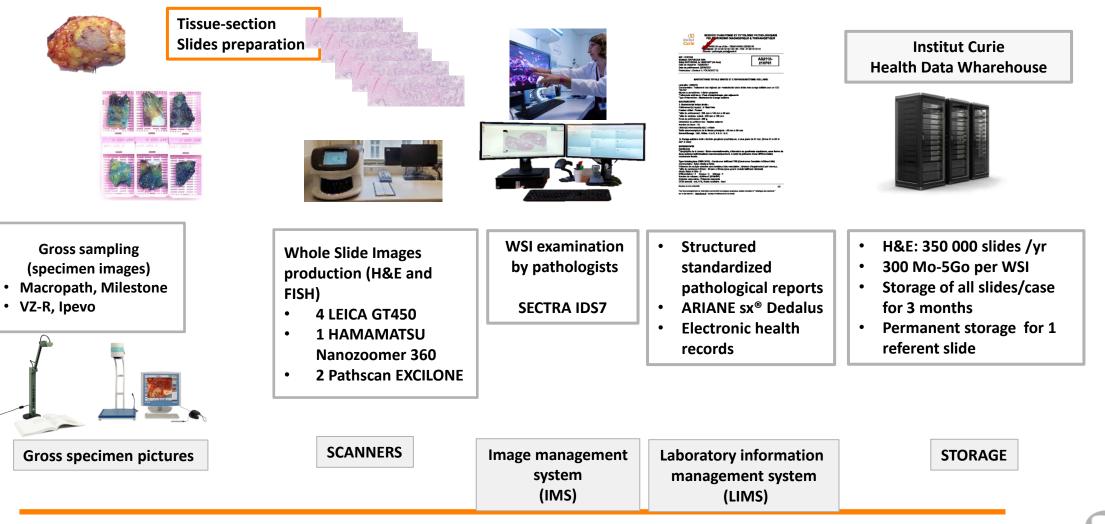
Pathology department of Institut Curie:

- 2 pathology units
 - one in St CLOUD west part of Paris; and one in the Center of Paris
 - within one hour of public transportation

- > 1600 slides per day
- The team = 20 pathologists

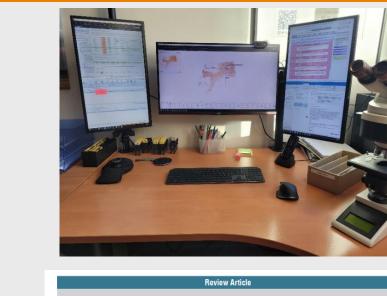


Implementation of digital pathology for diagnosis at Institut Curie



Workstation for the best confort of the pathologist

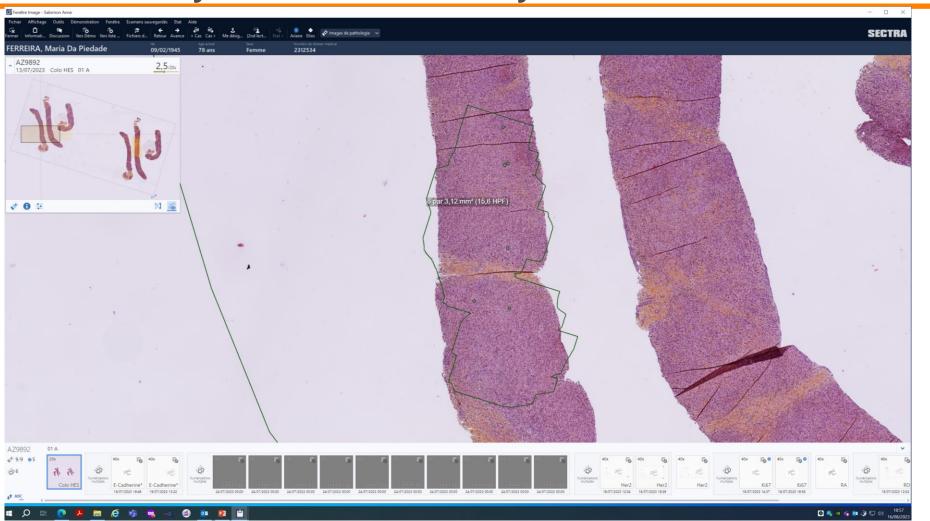
- Specifications provided by SECTRA (IMS editor)
 - Infrastructure
 - Bandwidth
 - Latency
 - Workstation
 - Processor
 - Graphics card
 - Monitors
 - Resolution
 - Refresh rate
 - Choice by the pathologists
 - 3D mouse
 - Screen choice (price, quality of the image and confort)



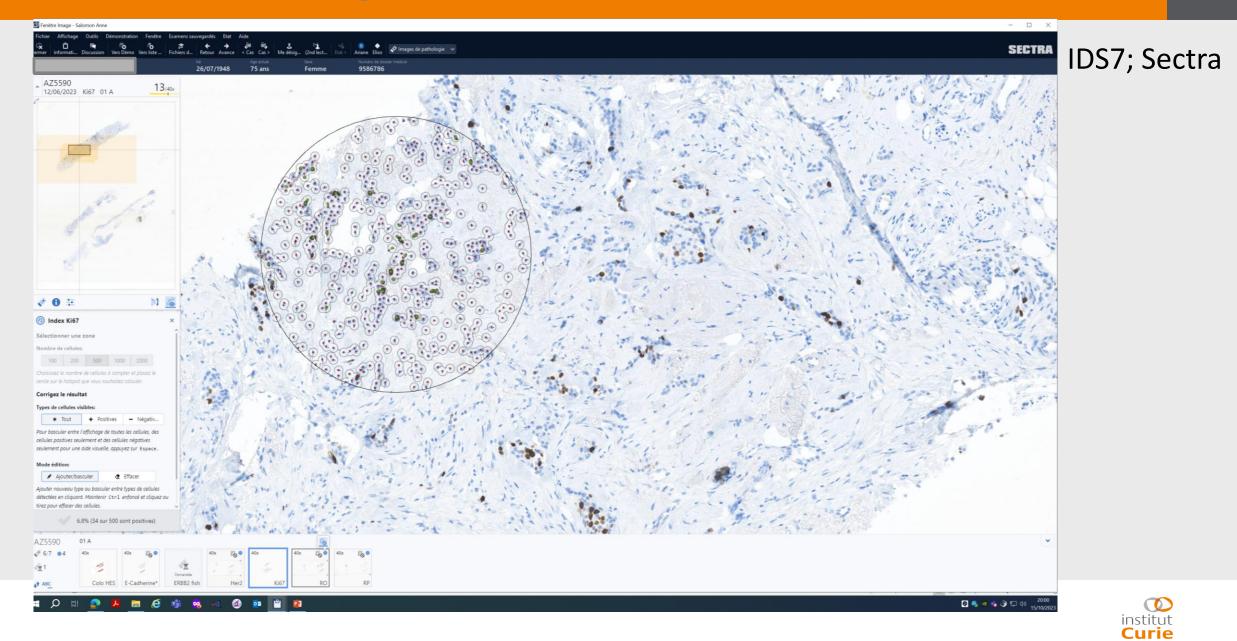
Display Characteristics and Their Impact on Digital Pathology: A Current Review of Pathologists' Future "Microscope"

Jacob T. Abel', Peter Duillette', Christopher L. Williams', John Blau', Jarone Cheng', Kaluo Yao', Winston Y. Lee', Toby C. Cornish', Ulyszes G.J. Balis', David S. McClinicck' 'Department of Pathology. University of Michigan. Ann Arbor, MI, USA. 'Department of Pathology, University of Oldahoma Health Sciences Center, Oldahoma CBy, OK, USA. 'Department of Pathology. University of Weak, Iowa, USA. 'Department of Pathology, University of California San Francisco, San Francisco, C. U.SA. 'Department of Pathology, University of Colado School of Meissine, University of California San Francisco, San Francisco, C. U.SA. 'Department of Pathology, University of Colado School of Meissine, Aurora. CO, USA.' Submitted: 01-May-2020 Revised: 22-May-2020 Accepted: 28-May-2020 Published: 11-Aug-2020

Mitotic count: IDS7 by Sectra makes it easy to do !



Evaluation of KI67 using the Sectra tool



1-Introduction

2- Diagnosis of breast cancer using AI

3- Prediction of Homologous Recombination Deficiency (HRD) in breast cancers using AI

4- Digital transition of a pathology department

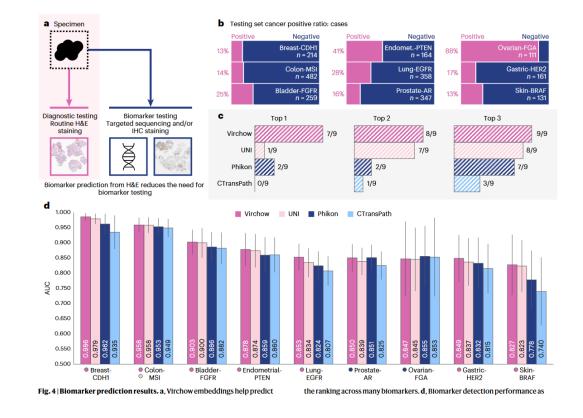
5- Conclusions

Conclusions (1)

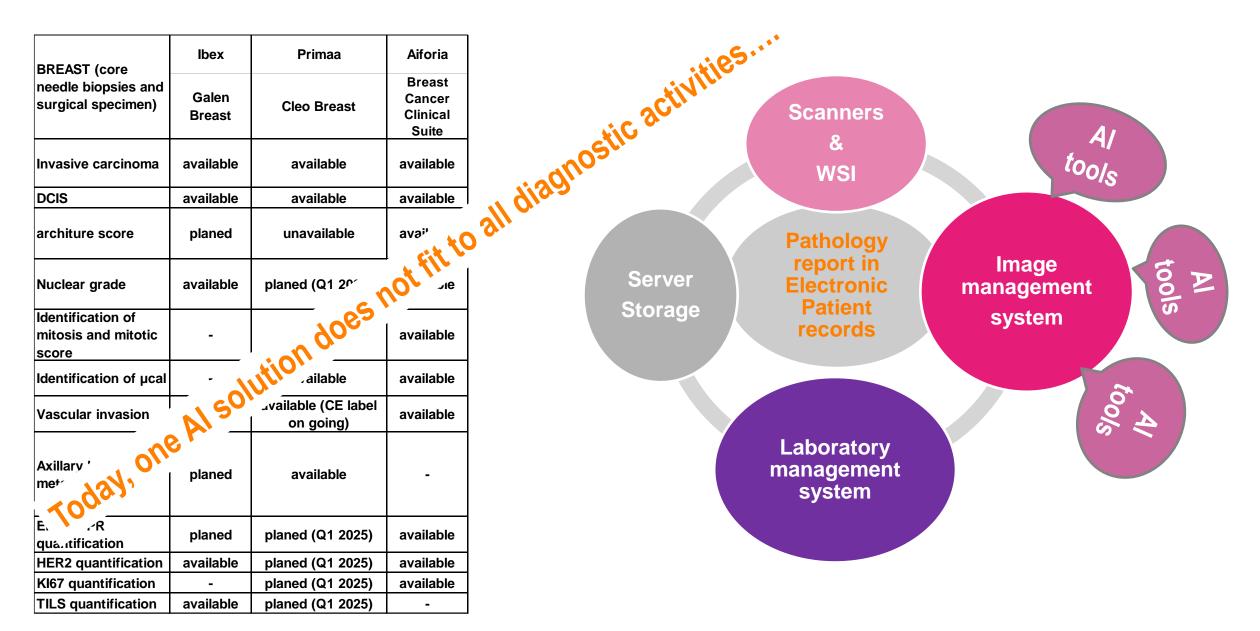
- Numerous algorithms are currently being developed by start-ups or academic research labs together with pathologists and to help pathologists:
 - For the diagnosis of breast cancer and axillary lymph node metastasis,
 - To increase reproducibility in biomarkers assessment,
- Economic models for the application of AI remains to be identified in many countries
- The generalization of digital transformation for pathology labs is needed for the use of Al, and is underway.
- Breast pathologists will use AI if it's easy to use, time-saving, highly accurate and if it's facilitate their work !

- Computational pathology: a dynamic field that makes fast tchnological progresses
- Algorithms before their use into clinical practice have to solve bias issues, their availiability on the market takes time.
- Common responsability between computational scientists and pathologists to develop performant and robust tools to facilitate our work and to better diagnose our patients
- Long term collaboration between pathologists and computational scientists
- From academic research to clinical practice: who does fill the gap?
 → Efficient tech transfer

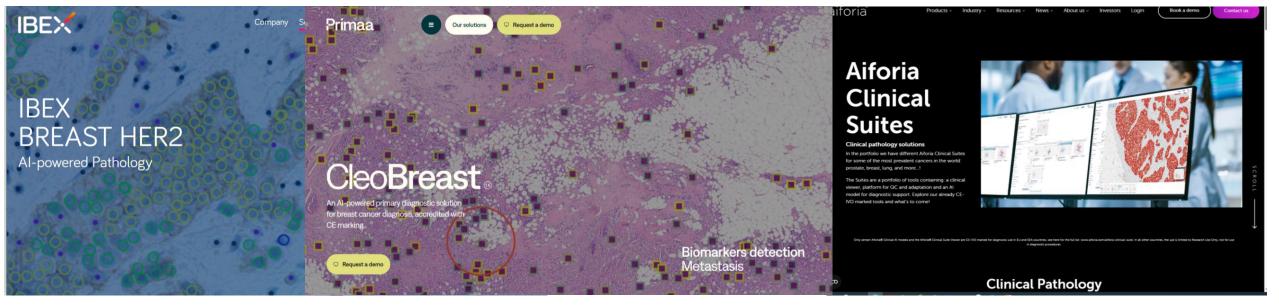
- Creation of large-scale deep neural network
- Trained on <u>very large</u> data sets (> 1 million slides)
- Algorithms named "self supervised" that do not necessitate pathologist annotations
- Diagnose frequent as well as rare cancers
- Can predict biomarkers



AI IN BREAST PATHOLOGY TO ASSIST THE PATHOLOGISTS FOR DIAGNOSTIC ACTIVITIES



At Institut Curie:



Ibex prostate and Breast go live next week !

In January 25

In June 25

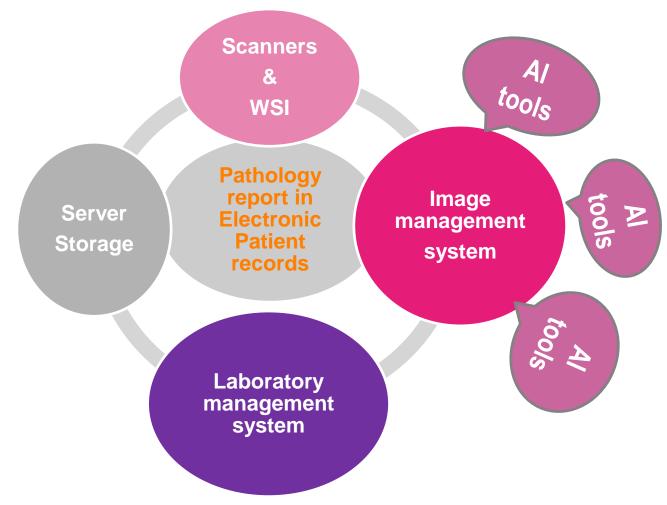
We will welcome a master student in social sciences & economy who will help us during one year

- To evaluate the ergonomy of each tool, to list tasks performed by the solution
- To summarize all steps needed to acquire and deploy an AI tool in an hospital
- To identify the security issues and the IT requirements to implement the tools
- To evaluate the cost and the benefit of using these AI tools

CONCLUSIONS & TAKE HOME MESSAGES

Al solutions in breast pathology

- INTEROPERABILITY:
 - Between informatics tools to set up digital pathology (Dicom format is becoming the standard)
- **SECURITY issues:** Al solutions accessible from clouds or on premise
- **ERGONOMY:** Al tools should be easy to use for pathologists
- AI TOOLS ROBUSTNESS: Involvement of pathologists; Control the bias; External validation
- HUMAN GUARANTEE !

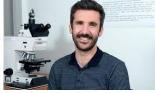


Acknowledgements

IBEX Medical Analytics: Dr SANDBANK, Manuela VESCLER, Chaim LINHART, Joseph MOSEL

Pr Stuart SCHNITT BW hospital Harvard Medical School

BATAILLON Guillaume GAUTHIER Arnaud, GONIN Julie FUHRMANN Laetitia, KLOUCH Khadidja GUENON Hélène, ANNETTE Laure TARIS Corinne, LAMY Anne Florence MENET Emmanuelle, ALLORY Yves & Department of pathology



STOPPA-LYONNET Dominique BELOTTI Muriel Department of Genetics STERN Marc-Henri POPOVA Tatiana INSERM U830

Inserm

a science pour la santé

The IT department, The Institute of Women's Cancer Staff Jessica LEYGUES & project managers; The patients, the donators of the Institut CURIE (Allianz); Astra-Zeneca for the research grant support; The Regional Agency of Health of its financial support

WALTER Thomas LAZARD Tristan (PhD) NAYLOR Peter & INSERM U900

MINES UNIVERSITÉ PARIS

